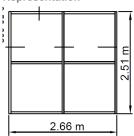
Evidence of Performance

Airborne sound insulation of building components

Test report No. 14-001123-PR01 (PB Z01-B01-04-en-01)


Basis

EN ISO 10140-1: 2010 +A1: 2012

EN ISO 10140-2: 2010 EN ISO 717-1: 2013

Test report no. 14-001123-PR01 (PB Z01-B01-04-de-01) dated 13.05.2014

Representation

Instructions for use

This test report serves to demonstrate the airborne sound insulation of a building component.

Validity

The data and results given relate solely to the tested and described specimen.

Testing the sound insulation does not allow any statement to be made on any further characteristics of the present construction regarding performance and quality.

Notes on publication

The **ift** Guidance Sheet "Conditions and Guidance for the Use of **ift** Test Documents" applies.

The cover sheet can be used as abstract.

Contents

The test report contains a total of 9 pages:

- 1 Object
- 2 Procedure
- B Detailed results
- 4 Instructions for use Data sheet (1 page)

Client EXALCO S.A.

5th Km of National Road Larisa-Athens 41110 Larisa Greece

Product	Stick system façade, four part
Designation	ALBIO 130
dimension	External dimension (w × h): 2660 mm × 2510 mm
Frame material	Aluminium profiles with thermal break
Type of opening	fixed light
Glazing	Insulating glass unit, 10LSG/15/5,
	Gas filling: air, Laminated glass with PVB-film
Area related mass	40 kg/m²
Special features	-

Weighted sound reduction index R_w Spectrum adaptation terms C and C_{tr}

 $R_w(C; C_{tr}) = 37 (-2; -4) \text{ dB}$

ift Rosenheim 13.05.2014

Dr. Joachim Hessinger, Dipl.-Phys. Head of Testing Department Building Physics

Johann Baume, Dipl.-Ing. (FH) Operating Testing Officer Building Acoustics

