Evidence of Performance

Air permeability Watertightness static / dynamic Resistance to wind load Impact resistance

Test Report 108 31168/1e

This is a translation of test report 108 31168/1 dated 11 june 2006.

Client EXALCO S.A.
5th Km of National Road Larissa-Athensns

41110 Larissa

Greece

Product Curtain walling

Designation Al

tion Albio 102

Overall dimensions (W x H)

(H) 4070 mm x 4012 mm

Frame material Aluminium

		Classification		
	Test	Facade construction	Window	
EN 12152	Air permeability	AE	4	
EN 12154	Water- tightness static	RE ₁₅₀₀	E 1500	
ENV 13050	Water- tightness dynamic	188 Pa/563 Pa	npd	
EN 13116	Resistance to wind load	Design load ± 1,5 kN/m² Safety load ± 2,25 kN/m²	npd	
EN 14019	Impact resistance	I5 / E5	npd	

npd = no performance determined

ift Rosenheim 12. October 2006

Jörn Peter Lass, Dipl.-Ing. (FH) Head of Testing Department ift Centre Windows & Facades Markus Egli, Dipl.-Ing. (FH)
Testing Engineer
ift Centre Windows & Facades

Basis

Test sequence according to EN 13830 : 2003-09, Curtain walling – Product standard

Test standards

EN 12153

EN 12155

EN 12179

EN 14019 ENV 13050

EN 1026

EN 1027

Representation

Instruction vor use

The present test report serves to demonstrate the above characteristics for curtain walling.

The present test report does not cover all the performance characteristics listed in the product standard.

Validity

The data and results provided refer solely to the tested and described specimen.

This test does not allow any statement to be made on further characteristics of the present structure regarding performance and quality, in particular the effects of weathering and aging.

Notes on publication

The **ift**-Guidance Sheet "Conditions and Guidance for the Use of **ift** Test Documents" applies.

The cover sheet can be used as abstract.

Contents

The report contains a total of 41 pages

- 4 01-1--4
- 1 Object2 Procedure
- 3 Detailed results

Annex 1 Photographs

Annex 2 Test record

Annex 3 Documentation and processing instructions of the system

Page 2 of 21

Test Report 108 31168/1e dated 12. October 2006 Clien: EXALCO S.A., GR-41110 Larissa, Greece

1 Object

1.1 Description of test specimen

Test elementCurtain wall
Manufacturer
EXALCO S.A.

System Albio 102 Frame material Aluminium

Overall dimensions 4070 mm x 4012 mm
Field grid dimensions 1099 mm x 1313 mm or
912 mm x 1313 mm

Subdivision see Page 4, drawing 1

Mullion / transom profiles

Profile material EN AW-6060, EN 574 (as specified by manufacturer)

Mullion Profile No. 102-006, insert profile 102-061

Side cover Profile No. 102-040
Transom Profile No. 102-036

Top cover Profile No. 102-018, between member and transom sealed with

elastic sealant

Bottom cover Profile No. 102-017

T-Connection Connection, Item No. 001, sealing piece 102001

Frame member Profile No. 102-007, with clip profile No. 102-008 (fixed light) or

No. 102-009 (window casements), see Fig. 5 in Annex 1

Corner design mitre-cut, with corner brackets Item No. 102 A (Code No. 5379)

and 5641) and Item No. 102, screw-fixed or compressed and

bonded

Frame seals

exterior Item No. 107, mitre-cut and bonded center Item No. 106, mitre-cut and bonded interior Item No. 109, mitre-cut and bonded

Glazing

Thickness/configuration 20 mm, <u>5</u> / 10 / <u>5</u>

Seals preformed glazing gaskets

exterior Item No. 43, mitre-cut and bonded interior Item No. 42, mitre-cut and bonded

Vapour pressure

equalization per field 2 slots 5 mm x 20 mm at bottom, 5 cm from frame

corner

Page 3 of 21

Test Report 108 31168/1e dated 12. October 2006 Clien: EXALCO S.A., GR-41110 Larissa, Greece

Drainage Bottom flashing notched over 2 cm length spaced at 80 cm

Insert unit Turn tilt window

Frame member Profile No. 102-007, with clip profile No. 102-009 (window

casement)

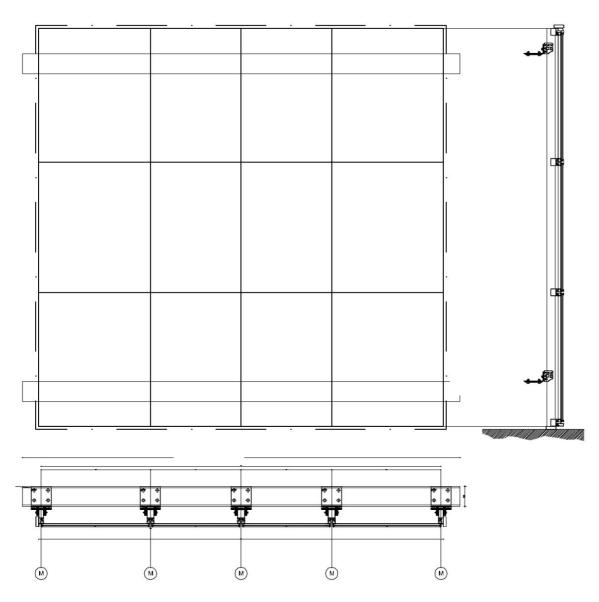
Insert piece friction bearing for casement profile (see Fig. 9)

Hinges integrated into casement profile

Locks 2 handles, see drawing 11

Vapour pressure

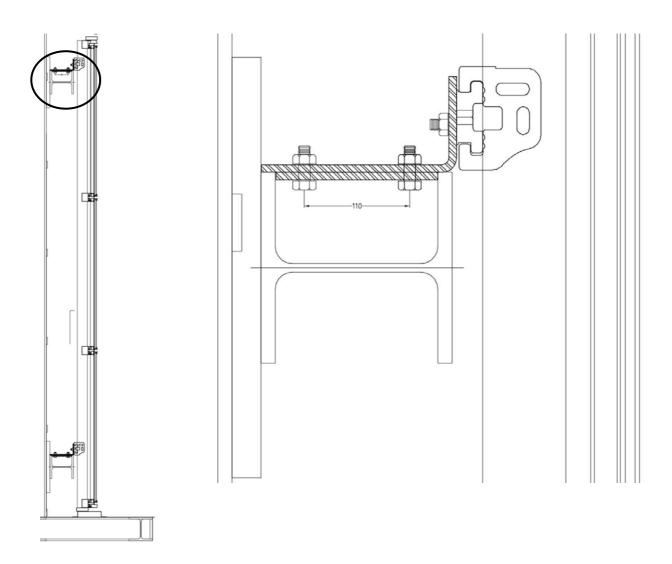
equalization per field 2 slots 5 mm x 20 mm at bottom, 10 cm from frame


corner

1.2 Representation of test specimen

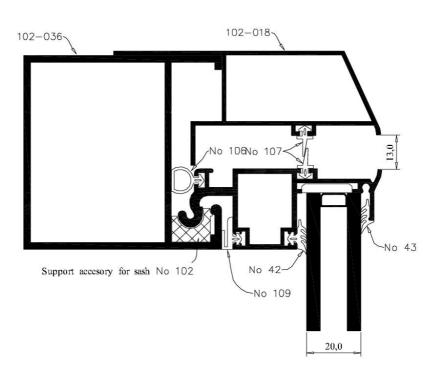
The drawings are based on unchanged documentation provided by the client and have not been checked fully and in detail for technical correctness.

Page 4 of 21



Drawing 1 Seen from outside

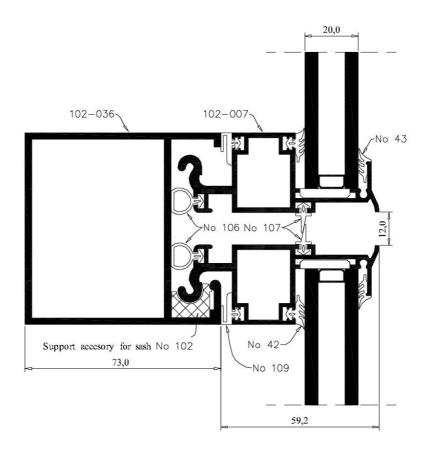
Page 5 of 21



Drawing 2 Vertical section, atattachment at top

Page 6 of 21

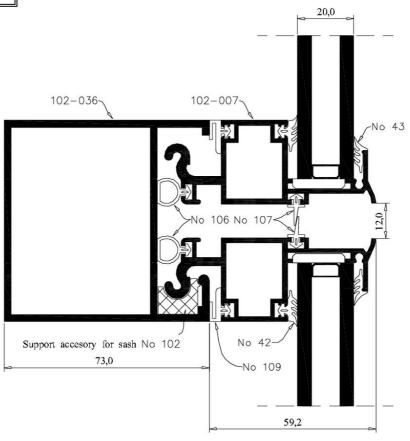
	VI		
F	F	F	F
F	F	F	F
F	\bigvee	F	F
F	F	F	F



Drawing 3 Vertical section, head point

Page 7 of 21

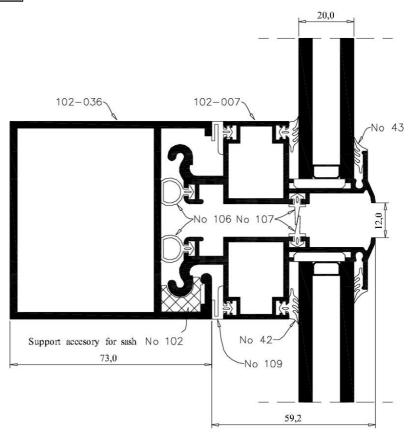
F	F V2	F	F
F	F	F	F
F	\bigvee	F	F
F	F	F	F



Drawing 4 Vertical section, transom with 2 fixed lights

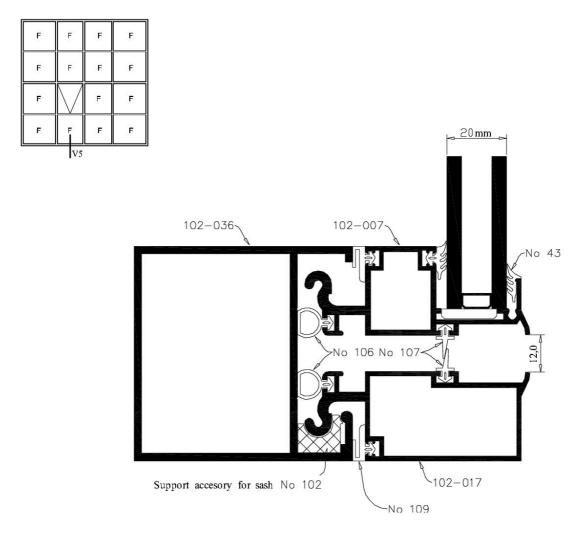
Page 8 of 21

E	F	F	F
F	F _{V3}	F	F
F	\bigvee	F	F
E	F	F	E [®]



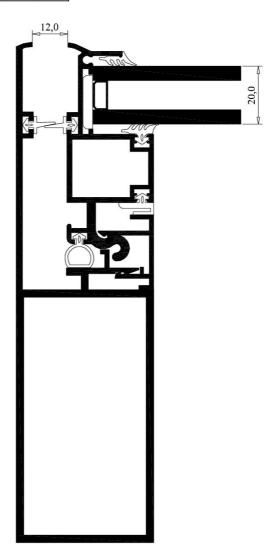
Drawing 5 Vertical section, transom: fixed light at top, casement at bottom

Page 9 of 21


F	F	F	F
F	F	F	F
F	\bigvee	F	F
F	V4 F	F	F

Drawing 6 Vertical section, transom: fixed light at bottom, casement at top

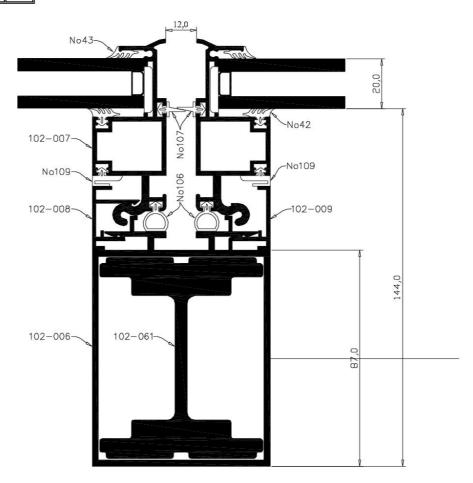
Page 10 of 21



Drawing 7 Vertical section, base point

Page 11 of 21

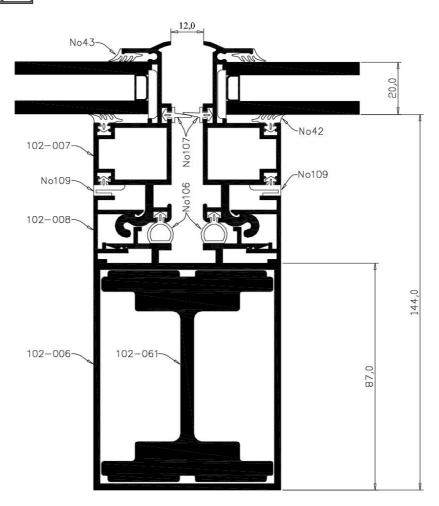
	F	F	F	F
	F	F	F	F
<u>H1</u>	- F	\bigvee	F	F
	F	F	F	F



Drawing 8 Horizontal section, side connection

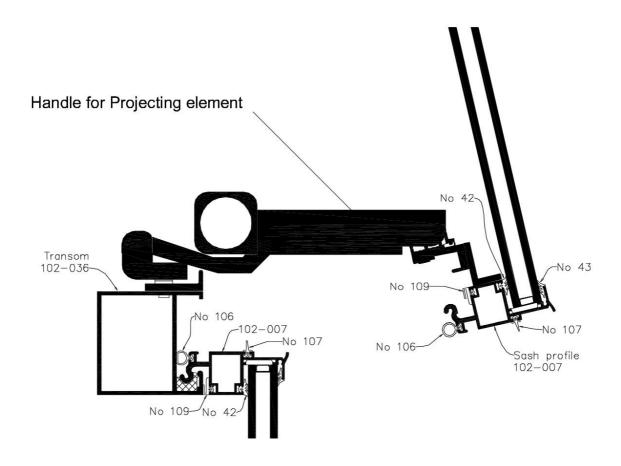
Page 12 of 21

F	F	F	F
F	F	Е	F
F ^{H2}	\bigvee	F	F
F	F	E	F



Drawing 9 Horizontal section mullion: at left - fixed light, at right - casement

Page 13 of 21


F	F	F	F
F	F	F	F
F	\bigvee	F-	H4 _F
F	F	F	F

Drawing 10 Horizontal section mullion: at left - fixed light, at right - casement

Page 14 of 21

Drawing 11 Handle Ito operate window

Page 15 of 21

Test Report 108 31168/1e dated 12. October 2006 Clien: EXALCO S.A., GR-41110 Larissa, Greece

2 Procedure

The tests were carried out on the facade test rig in Deggendorf, Germany. The **ift** Rosenheim operates this facade test rig. The instruments of the test rig and additional equipment are calibrated annually.

2.1 Methods

Boundary conditions

Basis of test sequence	
EN 13830 : 2003 - 09	Curtain walling – Product standard
Test standards	
EN 12153 : 2000-06	Curtain walling – Air permeability – Test method,
EN 1026 : 2000-06	Windows and doors – Air permeability – Test method,
EN 12155 : 2000-06	Curtain walling – Watertightness – Laboratory test under static pressure,
EN 1027 : 2000-06	Windows and doors – Watertightness – Test method
EN 12179 : 2000-06	Curtain walling – Resistance to wind load – Test method,
EN 14019 : 2004-06	Curtain walling – Impact resistance – Performance requirements,
ENV 13050 : 2000-11	Curtain walling – Watertightness – Laboratory test under dynamic condition of air pressure and water spray.
Classification standards	
EN 12152 : 2002-02	Curtain walling – Air permeability – Performance requirements and classification,
EN 12154 : 1999-12	Curtain walling – Watertightness – Performance requirements and classification,
EN 13116 : 2001-07	Curtain walling – Resistance to wind load – Performance requirements,
EN 12207 : 1999-11	Windows and doors – Air permeability – Classification,
EN 12208 : 1999-11	Windows and doors – Watertightness – Classification

from the test methods:

Pressure step 250 Pa was not applied.

As specified by the standards. There are following deviations

In deviation from EN 1027, a water spray rate of 2 l/m² min and a different nozzle arrangement were used for testing the watertightness of the insert window unit (corresponds to the watertightness test of curtain walling as per EN 12155).

Page 16 of 21

Test Report 108 31168/1e dated 12. October 2006 Clien: EXALCO S.A., GR-41110 Larissa, Greece

Test sequence according to product standard EN 13830 - Clause 5.3.2

- 1) Air permeability at up to 750 Pa
- 2) Watertightness under static pressure at up to 600 Pa
- 3) Deflection under wind load (design load according to EN 1991-1-4 \pm 1500 Pa \pm 1,5 kN/m²)
- 4) Repeat test of air permeability at up to 750 Pa
- 5) Repeat test of watertightness under static pressure at up to 1500 Pa 1)
- 6) Dynamic watertightness test (188 Pa/563 Pa)
- 7) Safety test at up to \pm 2250 Pa \triangleq \pm 2,25 kN/m²)
- 8) Impact resistance
- 9) Disassembly and inspection

2.2 Testing

Sampling by the client

Manufacturer Exalco model shop

Delivery of specimen Manufacture and assembly of facade by the client in calendar

weeks 26 and 27 / 2006

Date of test 12 July 2006

The test was attended by:

Mr Dimitris Pianas EXALCO
Mr Grigoris Kostandopoulos EXALCO
Mr Sideris Degoudis EXALCO
Mr Giannis Christokostas EXALCO
Mr Kostas Dimou EXALCO
Testing personnel: Mr Egli, Mr Reichelt ift Rosenheim

2.3 Test equipment

Test rig Inventory-No. 22822

¹⁾ Classification included the repeat test.

Page 17 of 21

Test Report 108 31168/1e dated 12. October 2006 Clien: EXALCO S.A., GR-41110 Larissa, Greece

3 **Detailed results**

3.1 **Summary of results**

Table 1 Summary of results

Test	Type of test	Classification standard	Classification
1.	Air permeability – facade	EN 12152	AE
2.	Air permeability – window	EN 12207	4
3.	Watertightness under static pressure facade	EN 12154	R7
4.	Watertightness under static pressure window	EN 12208 ¹	9A
5.	Deflection under wind load	EN 13116	< I / 200 or 15 mm at ± 1,5 kN/m²
6.	Repeat test of air permeability	EN 12152	AE
7.	Repeat test – Watertightness under static pressure: facade	EN 12154	RE ₁₅₀₀
8.	Repeat test – Watertightness under static pressure: window	EN 12208 ¹	E 1500
9.	Dynamic watertightness test	ENV 42050	no water penetration
		ENV 13050	188 Pa/ 563 Pa
10.	Safety test	EN 13116	± 2,25 kN/m²
11.	Impact resistance	EN 14019	I5 / E5
12.	Disassembly and inspection		Corresponds to drawings, no unallowed water penetration into the construction

Q:\FenFas\PROJEKTE\108\31168_Exalco\31168-1 efin1.doc

¹ Classification was possible only on the basis of EN 12208 : 1999-11, because testing deviated from EN 1027 : 2000-06 (water spray rate of 2 l/m² min,, different spray nozzle arrangement and without pressure step 250 Pa)

Page 18 of 21

Test Report 108 31168/1e dated 12. October 2006 Clien: EXALCO S.A., GR-41110 Larissa, Greece

3.2 Comments on test

3.2.1 Air permeability

Prior to testing, the mounted facade element was covered with a film to eliminate all leakages of the facade. The leakages of the test rig system were determined by zero measurement.

Thereafter the film was removed, three pressure pulses were applied to the facade and released as set out by the standard, followed by air permeability measurements.

Air permeability was tested at up to a test pressure differential of 750 Pa. The measured values are listed in the test record, Annex 2, page 2. The values were obtained by the difference method, where the measured air permeability of the facade element is deducted from the air permeability obtained from zero measurement

The values obtained were below the permitted Class A4 limit curve., at a test pressure differential of 750 Pa below the maximum permitted air permeability of 1,5 m 3 /(h m 2) related to overall area or 0,5 m 3 /(h m) related to fixed joint length. For this measurement of the facade the casement was covered with tape. For determining the air permeability of the functional joint of the insert window, the tape was removed and the window tested again. Air permeability of the insert window was determined from the differences obtained from the two measurements. The insert window can be classified according to EN 12207 : 1999 – 11, "Windows and doors – Air permeability – Classification", and is rated Class 4 related to joint-length.

3.2.2 Watertightness under static pressure

Watertightness under static pressure was tested at up to a test pressure differential of 600 Pa. No water penetration into the facade was detected.

3.2.3 Deflection under wind load

Deflection was tested by application of positive and negative wind pressures up to + 1500 Pa and – 1500 Pa respectively. As per EN 13116 the frontal deflection of the profiles between the structural support points must be determined. Layout and description of the measurement points are given in Fig. 1.

Page 6 of Annex 2 shows the deformations obtained. Furthermore, the effective deflections are presented. As set out by EN 1991-1-4, the effective deflections were below I/200 and 15 mm, respectively, when exposed to the specified design load of \pm 1,5 kN/m².

Page 19 of 21

Test Report 108 31168/1e dated 12. October 2006 Clien: EXALCO S.A., GR-41110 Larissa, Greece

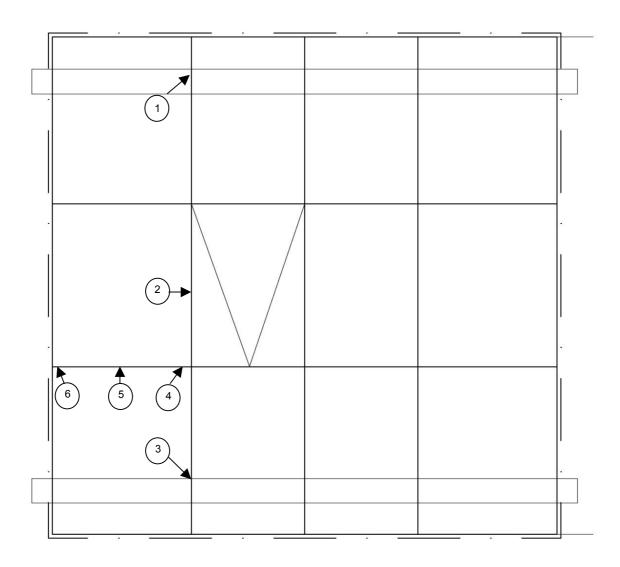


Fig. 1 Layout of measurement points

Measurement point 1: Mullion, top connection Measurement point 2: Mullion, field centre

Measurement point 3: Mullion, bottom connection Measurement point 4: Transom, side connection Measurement point 5: Transom, field centre Measurement point 6: Transom, side connection

3.2.4 Repeat test of air permeability

The results of the first test were confirmed. The values obtained were below the maximum permitted air permeability of 1,5 m³/(h m²) related to the overall area or 0,5 m³/(h m) related to fixed joint length at a test pressure differential of 750 Pa. The facade construction is rated class AE.

Page 20 of 21

Test Report 108 31168/1e dated 12. October 2006 Clien: EXALCO S.A., GR-41110 Larissa, Greece

3.2.5 Repeat test of watertightness

The test was performed at up to a test pressure differential of 1500 Pa. No water penetration through the facade construction was detected.

3.2.6 Watertightness under dynamic air pressure

Using a movable wind generator located at approx. 65 cm distance from the test specimen, all areas of the facade are exposed to a regulated turbulent air flow and simultaneously to a water spray operation at a rate of 2 l/min m^2 . The velocity of the air flow at a distance of approx. 20 mm from the end of the air channel is approx. 20 m/sec. At the same time, negative pressures alternating between - 188 Pa / - 563 Pa every 5 \pm 1 sec. are generated in the test chamber. The time required by the test to cover all joints was approx. 20 minutes.

No water penetration was detected

3.2.7 Safety test

The test element was exposed to positive and negative wind loads applying 150% of the design wind loads of \pm 2,25 kN/m² for more than 15 sec. each, as set out by EN 1991-1-4.

No breakages or any other visible changes were detected.

3.2.8 Impact resistance

Impact resistance was tested in accordance with EN 14019 using an impact body as set out by DIN EN 12600 : 2003 - 04, composed of a twin tyre of a pressure of 0.35 ± 0.02 MPa and a total weight of 50 kg. The impact load positions are illustrated on Fig. 2 (P1 to P4). The drop height was 950 mm and had been agreed previously with the client..

No damage of the curtain walling construction was detected.

Thus the facade construction is rated Class I5 and. E5, as set out by EN 14019.

Page 21 of 21

Test Report 108 31168/1e dated 12. October 2006 Clien: EXALCO S.A., GR-41110 Larissa, Greece

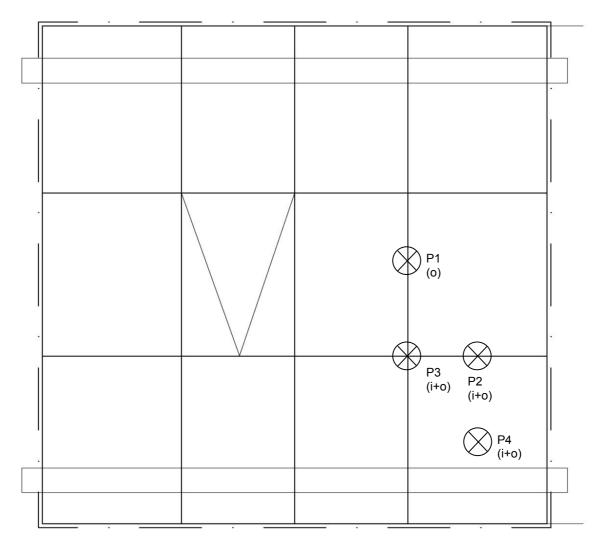


Fig. 2 Impact load positions

3.2.9 Disassembly and inspection

After conclusion of the test, several glazed fields were deglazed.

No unallowed traces of water were detected in the rebate platform.

Completion and workmanship of the construction were in conformity with the requirements of the system description and the drawings submitted (Annex 3).

Fig. 1 Facede mounted to test rig

Fig. 2 Facade with film suspended in front for zero measurement

Fig. 3 Facade with spray grid suspended in front for watertightness test, at left fan for dynamic watertightness test

Fig. 4 Impact resistance test

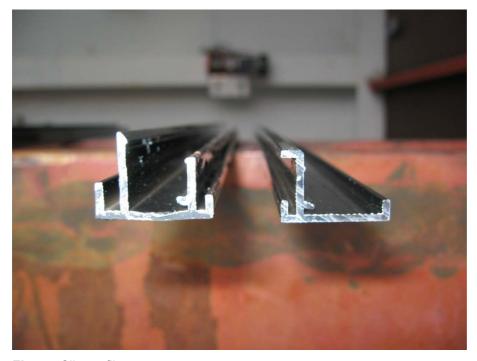


Fig. 5 Clip profile

Fig, 6 Intersection seen from outside

Fig. 7 Frame members seen from top, mullion at bottom of photo

Fig. 8 Frame member mounted to facade, mullion-transom-connection at right



Fig. 9 Supports for casement member

Fig. 10 Notching of bottom cover profile

Page 1 of 8

Test Report 108 31168/1e dated 12. October 2006 Client: EXALCO S.A., GR-41110 Larissa, Greece

Test records

Specimen	Facade element	
Order No.	108 31168	ſ
Place of test	Deggendorf	ı
Company	EXALCO	ı
Date of test	12.7.06	ı
Test engineer	Egli/Reichelt	
System	Albio 102	
Frame material	Aluminium	
Date of manufacture	KW 26/27 2006	
Insert window unit	Top-hung casement	
Attended by	see list in the test report	ı

	K	R	Α	
Temperature	23,3	25	26]° C
Air humidity	65,5	65	63	%
Air pressure	977	977	977	hPa

K = test chamber R = test room A = outside

Calculation of fixed joints Dimensions in mm											
Width	Height		Length/mm								
1062	1263	6	27900								
862	1263	6	25500								
4070	0	4	32560								
4012	0	5	40120								
0	0	0	0								
0	0	0	0								
0	0	0	0								
0	0	0	0								
0	0	0	0								
0	0	0	0								
0	0	0	0								
0	0	0	0								
0	0	0	0								
0	0	0	0								
0	0	0	0								
0	0	0	0								
0	0	0	0								
0	0	0	0								
0	0	0	0								
0	0	0	0								
0	0	0	0								
		Sum	126080								

	ation of		area
	Height	, ,,,,,,	area/m²
4070	4012		16.33

1 Air permeability

Test method: EN 12153 : 2000 - 06 Classification: EN 12152 : 2002 - 02

The opening casement of the insert window was covered by tape for the test.

overall area of test specimen: 16,33 m² Joint length of fixed joints: 126,08 m

Table 1	Pressure differential in Pa Flow rate (Volume)	50	100	150	200	250	300	450	600	750
	Absolute m³/h	3,1	4,6	6,6	7,8	8,9	9,9	13,2	16,9	19,0
Zero Measurement	joint length m³/hm	0.02	0,04	0,05	0,06	0,07	0,08	0,10	0,13	0,15
	overali area m ³ /nm ²	0.19	0.28	0.40	0.48	0.55	0.61	0.81	1.03	1.16

	Pressure differential in Pa	50	100	150	200	250	300	450	600	750
Table 2	Flow rate (Volume)									
		6,5	8,9	13,1	16,4	19,1	21,9	29,7	35,2	40,7
positive wind pressure	joint length m³/hm	0,05	0,07	0,10	0,13	0,15	0,17	0,24	0,28	0,32
	overali area m ³ /nm ²	0.40	0.55	0.80	1.00	1,17	1.34	1.82	2.16	2.49

I lable 3	Pressure differential in Pa Flow rate (Volume)	50	100	150	200	250	300	450	600	750
measurement –Zero	Absolute m³/h	3,4	4,3	6,5	8,6	10,2	12,0	16,5	18,3	21,7
	joint length m³/hm	0,03	0,03	0,05	0,07	0,08	0,10	0,13	0,15	0,17
measurement	overali area m ³ /nm ²	0.21	0.26	0.40	0.53	0.62	0.73	1.01	1,12	1.33

Table 4 Measured values at	Pressure differential in Flow rate (Volume)		50	100	150	200	250	300	450	600	750
	Absolute	m³/h	4,7	8,9	11,7	14,9	17,1	19,4	26,9	34,1	41,1
negative wind	joint length	m³/hm	0,04	0,07	0,09	0,12	0,14	0,15	0,21	0,27	0,33
pressure	overali area	mynm	0.29	0.55	0.72	0.91	1.05	1,19	1.65	2.09	2.52

i lable 5	Pressure differential in Pa Flow rate (Volume)	50	100	150	200	250	300	450	600	750
measurement –Zero	Absolute m³/h	1,6	4,3	5,1	7,1	8,2	9,5	13,7	17,2	22,1
	Linear m³/hm	0,01	0,03	0,04	0,06	0,07	0,08	0,11	0,14	0,18
measurement	Surrace m ³ /nm ²	0.10	0.26	0.31	0.43	0.50	0.58	0.84	1.05	1.35

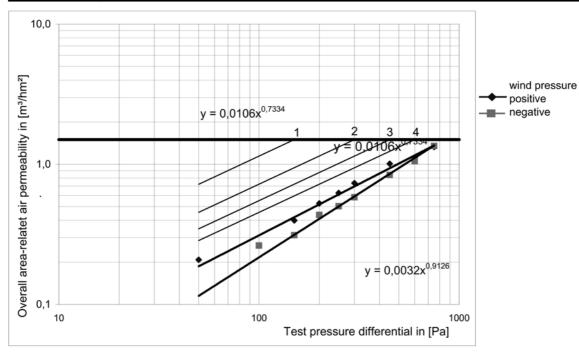


Diagram 1 Overall area-related air permeability

Annex 2 Test record

Page 3 of 8

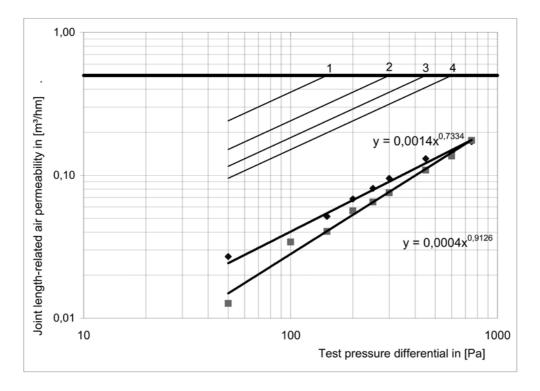


Diagram 2 joint length-related air permeability

Reference air permeability related to overall area positive wind pressure	Q100 =	0,31 m³/hm²	
Reference air permeability related to joint length positive wind pressure	Q100 <	0,10 m³/hm	
Reference air permeability related to overall area negative wind pressure	Q100 =	0,21 m³/hm²	
Reference air permeability related to joint length negative wind pressure	Q100 <	0,10 m³/hm	
Total classification of air permeability	Class	AE	

Annex 2 Test record

Page 4 of 8

Test Report 108 31168/1e dated 12. October 2006 Client: EXALCO S.A., GR-41110 Larissa, Greece

2 Air permeability of the inserted window

Test method EN 1026 : 2000 - 06 Classification EN 12207 : 1999 - 11

joint length: 4,25 m overall area 1,09 m²

Table 6	pressure differ		50	100	150	200	250	300	450	600
Measured values	Flow rate (Volun	ne)								
	Absolute	m³/h	7,1	9,0	13,2	17,4	19,7	21,9	30,0	35,5
at positive wind	joint length	m³/hm	1,67	2,12	3,11	4,09	4,64	5,16	7,06	8,35
pressure	overali area	m ³ /nm ²	6.52	8.27	12.12	15.98	18.09	20.12	27,56	32.61

Table 7	pressure differe Flow rate (Volum		50	100	150	200	250	300	450	600
difference =	Absolute	m³/h	0,6	0,1	0,1	1,0	0,6	0,0	0,3	0,3
casement	joint length	m³/hm	0,14	0,02	0,02	0,24	0,14	0,00	0,07	0,07
00001110111	overali area	m ^y /nm ²	0.55	0.09	0.09	0.92	0.55	0.01	0.28	0.28

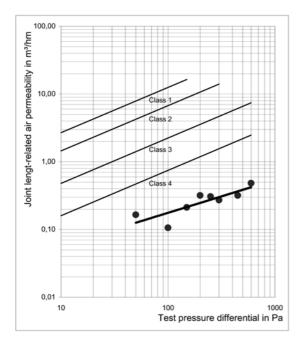

Table 8 Measured values	pressure diffe Flow rate (Volu		50	100	150	200	250	300	450	600
at pagative wind	Absolute	m³/h	5,5	9,7	13,4	16,6	19,1	21,7	29,3	37,9
at negative wind	joint length	m³/hm	1,29	2,28	3,15	3,91	4,49	5,11	6,89	8,92
pressure	overali area	m ^y nm ²	5.05	8 91	12 31	15 25	17 54	19 93	26.91	34 81

Table 9	pressure differe Flow rate (Volum		50	100	150	200	250	300	450	600
difference =	Absolute	m³/h	8,0	8,0	1,7	1,7	2,0	2,3	2,4	3,8
casement	joint length	m³/hm	0,19	0,19	0,40	0,40	0,47	0,54	0,56	0,89
50.551115111	overali area	m ³ /nm ²	0.73	0.73	1.56	1,56	1.84	2,11	2.20	3.49

Table 10 Measured values	pressure differential Flow rate (Volume)	in Pa	50	100	150	200	250	300	450	600
	Absolute	m³/h	0,7	0,4	0,9	1,4	1,3	1,2	1,4	2,1
at negative wind	joint length m	1³/hm	0,2	0,1	0,2	0,3	0,3	0,3	0,3	0,5
pressure	overali area m	7nm-	0.64	0.41	0.83	1.24	1.19	1.06	1.24	1.88

Test Report 108 31168/1e dated 12. October 2006 Client: EXALCO S.A., GR-41110 Larissa, Greece

Test pressure differential in Pa

Diagram 3 Joint length-related air permeability average value from positive and negative wind pressures)

Diagram 4 Overall area-related air permeability average value from positive and negative wind pressures)

Tabelle 11 results

Reference air permeability of joint length	Q100 <	0,10 m³/hm
Reference air permeability of overall area	Q100 =	0,26 m ³ /hm ²
Air permeability of joint length	Klasse	4
Air permeability of overall area	Klasse	4
Classification according to EN 12207	Klasse	4

Classification according to the numerical average of table 10.

Annex 2 Test record

Page 6 of 8

Test Report 108 31168/1e dated 12. October 2006 Client: EXALCO S.A., GR-41110 Larissa, Greece

3 Watertightness

Test method: EN 12155 : 2000 - 06 Classification: EN 12154 : 1999 - 12

No water penetration at up to 600 Pa

Classification according to	Class R7	
-----------------------------	----------	--

4 Resistance to wind load

Maximum wind load p_{max} 1500 Pa positive wind pressure (Design load) -1500 Pa negative wind pressure

Fig.1 of the test report shows the layout of the measurement points.

Table 12 Maximum permitted deflection for classification

Profile		Mullion		Transoms	
Displacement transducer No.		M1 to M3		M4 to M6	
Effective span		3300 mm		1062 mm	
Permitted deflection	1/200		15 mm		5,3 mm
Positive wind pressu	re				,
	% von p _{max}	25	50	75	100
I	p₁ in Pa	375	750	1125	1500
Table 13	M1 in mm	0	0,1	0,2	0,3
Measured results of frontal	M2 in mm	-1,5	-3	-4,8	-6,9
deflection in mm	M3 in mm	-0,1	-0,2	-0,4	-0,6
1	f in mm 1/	-1,45 -2276	-2,95 -1119	-4,7 -702	-6,75 -489
	1/	-22/0	-1119	-702	-409
	% von p _{max}	25	50	75	100
1	p₁ in Pa	375	750	1125	1500
Table 14	M4 in mm	-1	-2	-3,3	-4,8
Measured results of frontal	M5 in mm	-0,8	-1,6	-2,6	-3,7
deflection in mm	M6 in mm	-0,4	-0,9	-1,5	-2,1
1	f in mm	-0,1	-0,15	-0,2	-0,25
	1/	-10620	-7080	-5310	-4248
Negative wind pressu					
	% von p _{max}	25	50	75	100
l	p₁ in Pa	-375	-750	-1125	-1500
Table 15	M1 in mm	0	-0,1	-0,3	-0,4
Measured results of frontal	M2 in mm	1,4	3	4,9	7,2
deflection in mm	M3 in mm	0,2 1.3	0,4	0,5	0,8
1	f in mm 1/	2538	2,85 1158	4,8 688	471
	17	2330	1100	000	4/1
	% von p _{max}	25	50	75	100
I	p₁ in Pa	-375	-750	-1125	-1500
Table 16	M4 in mm	1,1	2,2	3,5	5,1
Measured results of frontal	M5 in mm	0,9	1,8	2,8	3,9
deflection in mm	M6 in mm	0,4	1,1	1,7	2,2
I	f in mm	0,15	0,15	0,2	0,25

Key

p₁ Test pressure

M1, M2, M3, ... Frontal dislodgement at measurement points M1, M2, M3,...

Frontal deflection

Classification of resistance to wind load	Requirement fulfilled
---	-----------------------

7080

7080

5310

Test Report 108 31168/1e dated 12. October 2006 Client: EXALCO S.A., GR-41110 Larissa, Greece

5 Repeat test of air permeability

As set out by EN 13116 the positive difference between the values obtained during the first and second tests for air permeability at the highest pressure must not exceed 0.3m³/hm² and 0.1m³/hm, respectively. The requirement was fulfilled.

6 Repeat test of watertightness

Test method: EN 12155 : 2000 - 06 Classification: EN 12154 : 1999 - 12

No water penetration at up to 1500 Pa

Classification as per EN 12154	Class	RE ₁₅₀₀	
--------------------------------	-------	--------------------	--

7 Dynamic watertightness test

Test method: ENV 13050 : 2000 - 11

Pressure in Pa		Comment	
Pmin = Pmax / 3	188		
Pmax =0,375 x P1*	563	No water penetration	

^{*}P1 is maximum wind load p_{max} from test of resistance to wind load

8 Resistance to wind load - Safety test

Test method: EN 12179 : 2000 - 06 Classification: EN 13116 : 2001 - 07

Safety test at	2250 Pa / -2250 Pa	
Total classification *)	Resistance to wind load	Requirement fulfilled

^{*)} Total classification results from 3 and 8

Annex 2 Test record

Page 8 of 8

Test Report 108 31168/1e dated 12. October 2006 Client: EXALCO S.A., GR-41110 Larissa, Greece

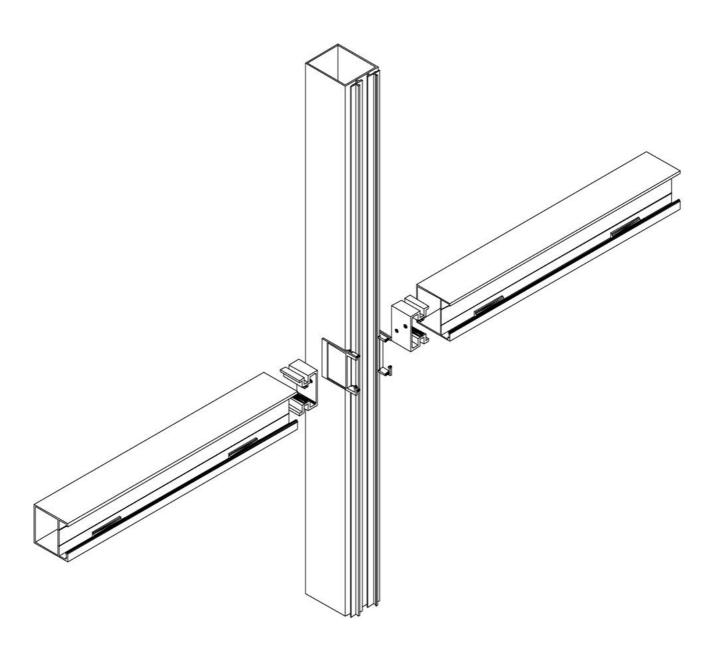
9 Impact resistance

Test method: EN 14019 : 2004 - 06 Classification: EN 14019 : 2004 - 06

All impact load positions without damage. Drop height 950 mm Layout of impact load positions see Fig. 2 of test report.

Classification according to EN 14019	Class I5 / E5	
--------------------------------------	---------------	--

ift Rosenheim 12.7.06

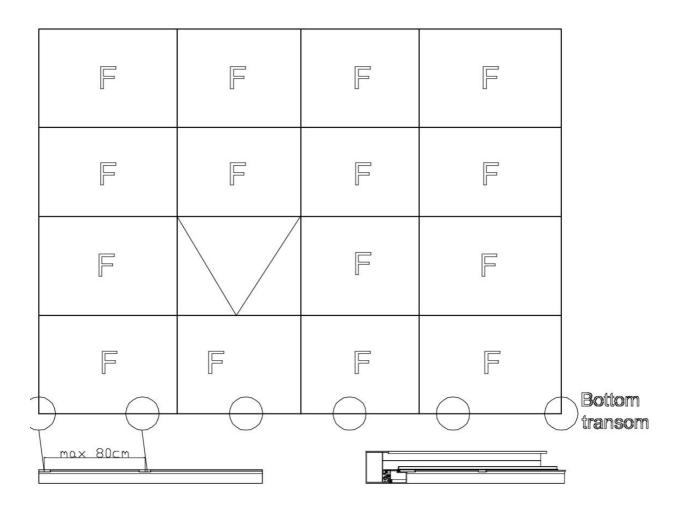

Annex 3 Documentation and processing instructions of the system

Page 1 of 7

Test Report 108 31168/1e dated 12. October 2006 Client EXALCO S.A., GR-41110 Larissa, Greece

Mechanical mullion-transom-connection

Annex 3 Documentation and processing instructions of the system

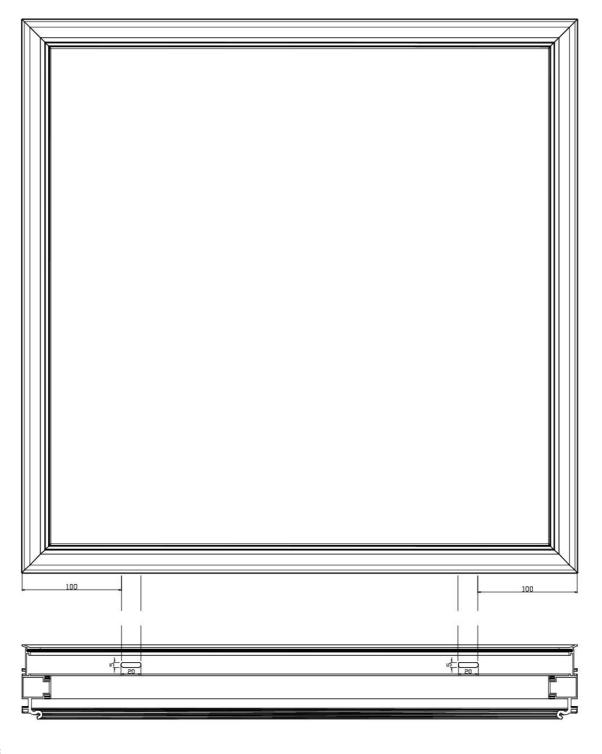

Page 2 of 7

Test Report 108 31168/1e dated 12. October 2006 Client EXALCO S.A., GR-41110 Larissa, Greece

Drainage

Drainage principle

Annex 3 Documentation and processing instructions of the system


Page 3 of 7

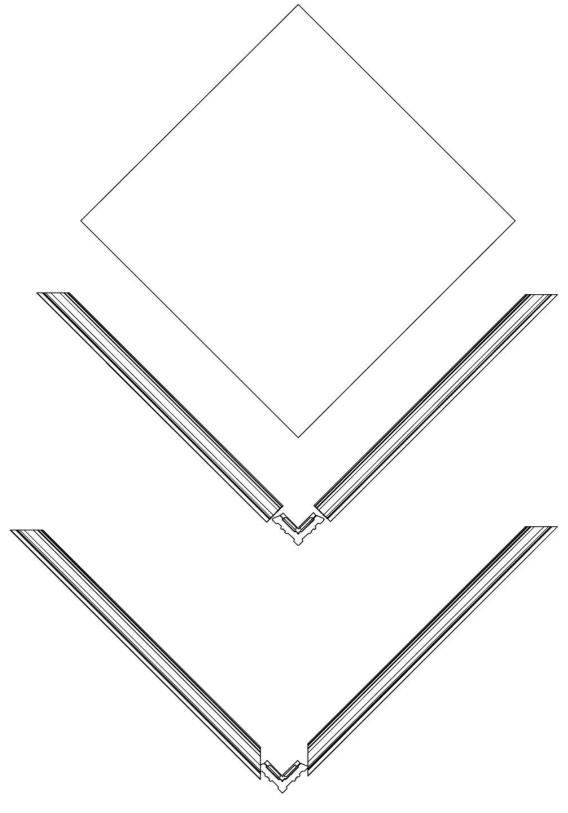
Test Report 108 31168/1e dated 12. October 2006 Client EXALCO S.A., GR-41110 Larissa, Greece

Vapour pressure equalization

Drainage holes for profile 102-007

Note:

Annex 3 Documentation and processing instructions of the system


Page 4 of 7

Test Report 108 31168/1e dated 12. October 2006 Client EXALCO S.A., GR-41110 Larissa, Greece

Frame joint

Connection accessories for profile 102-007

Test Report 108 31168/1e dated 12. October 2006 Client EXALCO S.A., GR-41110 Larissa, Greece

EZAPTHMATA/ACCESSORIES

ΚΩΑΙΚΟΣ CODE	ПЕРІГРАФН	DESCRIPTION	EXHMA FIGURE
	ΣΥΝΔΕΣΜΟΣ ΣΤΗΡΙΞΗΣ	Mullion connector	
5107	No 001	No 001	3-1-1
5114	No 002	No 002	
5144	No 003	No 003	
	ΦΛΑΝΤΖΑ ΥΑΛΟΠΕΤΑΣΜΑΤΟΣ	Flange between mullion and transom	
5123	102001	102001	
5216	102002	102002	
5148	102003	102003	
5379	ΓΩΝΙΑ ΣΥΝΔΕΣΕΩΣ Νο 102Α΄	Steel joint corner No 102 A´	
5641	ΠΡΟΣΘΗΚΗ ΓΏΝΙΑΣ Νο 102Α΄	Additional part for joint corner 102A'	
5817	ΕΞΑΡΤΗΜΑ ΣΤΗΡΙΞΗΣ ΤΥΦΛΩΝ ΣΗΜΕΙΏΝ Νο 102	Support accessory for inaccessible spots	
5102	ΕΞΑΡΤΉΜΑ ΣΤΗΡΙΞΉΣ ΦΥΛΛΟΎ Νο 102	Support accessory for sash profiles	

АLBIO 102

ACCESSORIES

EXALCO

Page 6 of 7

Test Report 108 31168/1e dated 12. October 2006 Client EXALCO S.A., GR-41110 Larissa, Greece

EZAPTHMATA/ACCESSORIES

ΚΩΔΙΚΟΣ CODE	ПЕРІГРАФН	DESCRIPTION	EXHMA FIGURE
5680	ΓΩΝΙΑ ΕΥΘΥΓΡΑΜΜΙΣΕΩΣ Νο 102	Alignment square 102	
5004	ΛΑΣΤΙΧΟ Νο 42	Gasket Nr.42	#
5004	ΛΑΣΤΙΧΟ Νο 43	Gasket Nr.43	44
5645	ΛΑΣΤΙΧΟ ΣΥΡΤΑΡΩΤΟ Νο 109	Sliding gasket Nr.109	7
5645	ΛΑΣΤΙΧΟ ΣΥΡΤΑΡΩΤΟ Νο 106	Sliding gasket Nr.106	Q
5646	ΛΑΣΤΙΧΟ ΣΥΡΤΑΡΩΤΟ Νο 107	Sliding gasket Nr.107	+

АLBIO 102

ACCESSORIES

EXALCO

Test Report 108 31168/1e dated 12. October 2006 Client EXALCO S.A., GR-41110 Larissa, Greece

EEAPTHMATA/ACCESSORIES

ΚΩΔΙΚΟΣ CODE	ПЕРІГРАФН	DESCRIPTION	ΣΧΗΜΑ FIGURE
5744	ΡΥΘΜΙΖΟΜΕΝΉ ΒΑΣΉ ΥΑΛΟΠΕΤΑΣΜΑΤΌΣ	Adjustable structural bracket	
5609	ΕΞΑΡΤΉΜΑ ΒΑΣΉΣ ΥΑΛΟΠΕΤΑΣΜΑΤΌΣ	Accessory for structural bracket	
	ΛΑΒΗ ΥΑΛΟΠΕΤΑΣΜΑΤΌΣ	Cremone Bolt	
5202	МІКРН	Small	
5215	МЕГАЛН	Large	